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FORCES A C T I N G  ON A C O U L O M B  CRYSTAL OF M I C R O P A R T I C L E S  IN P L A S M A  

I. V.  Schweigert  and  V.  A. Schweigert  I UDC 533.9 

An equilibrium two-layer structure of  charged microparticles in the near-electrode layer of  a 
radio-frequency discharge was simulated numerically using the Monte Carlo method. Depending 
on gas pressure, the microparticles either move chaotically or form a multilayer structure with 
a hexagonal lattice in a horizontal plane. Based on the experiment, a mechanism is proposed 
that describes the unusual structure of a plasma crystal in which particles of  the lower layer are 
located in the vertical direction strictly under the particles of  the upper layer and form vertical 
columns. 

In t roduc t ion .  The interest in the behavior of microparticles in a plasma is dictated by the important 
role they play in technological processes of plasma-chemical deposition and etching of films. Because of the 
great difference in thermal velocity between electrons and ions, the particles in a plasma acquire a negative 
charge Z which multiply exceeds the electron charge. The order of magnitude of the microparticle surface 
potential U is several electron temperatures Te. For particles with a characteristic radius R = 10-6-10 -s m 
and U ..- 5--10 eV, the surface charge is (10s-104)e, where e is the elementary charge. For typical experimental 
conditions, therefore, the energy of the Coulomb interaction of charged particles is Uk = e2Z2/a, where 
a is the distance between the particles, which is significantly higher than the gas temperature T. Wigner 
crystallization in Coulomb systems is known to occur at G = U t / T  ~. 135 in the two-dimensional case 
and at G ~. 170 in the three-dimensional case [1--4]. Therefore, Ikezi [5] predicted that Coulomb crystals 
consisting of charged microparticles can appear in a plasma. In 1994, ordered systems of microparticles were 
almost simultaneously discovered in laboratory plasma by several experimental teams [6-9]. The behavior 
of a crystal of microparticles in a plasma is of interest, first, because they are a unique model for studying 
a strongly nonideal plasma and phase transitions in Coulomb systems. Second, the effects related to the 
interaction of crystalline (microparticles) and gaseous (electrons, ions, and neutrals) phases, the propagation 
of plasma waves in such systems, etc. remain poorly studied. Even the first observations of melting of a plasma 
crystal led to results that do not fit the commonly accepted models of Coulomb systems. The critical value of 
the parameter (G ~ 20,000) [8] that characterizes crystal melting in a gas-discharge plasma turned out to be 
significantly higher than the values typical of Coulomb systems. In a radio-frequency gas discharge burning 
between horizontal flat electrodes, the microparticles are "gliding" in the lower near-electrode layer, near the 
layer--quasineutral plasma interface. The equilibrium position of the particles is determined by the balance of 
oppositely directed forces (gravitational and electrical). 

The shielding of the potential of the microparticles in the near-electrode layer is comparatively slight 
[10] and cannot be responsible for such a significant difference in the values of the parameter G. Detailed 
observations [11-13] conducted for different values of particle density, gas pressure, and discharge power 
demonstrated a number of new interesting effects. When the density is low, the particles form a one-layer 
hexagonal lattice which remains crystalline over the range of gas pressure and discharge power under study. 
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As the particle density increases, a two-layer crystal is formed owing to Coulomb repulsion, and this is in 
agreement with theoretical concepts [14, 15]. According to theory, however, depending on the particle density, 
different types of lattices with close packing (rectangular, squared, diamond-shaped, or hexagonal) should 
arise both in the horizontal and vertical directions [14, 15]. In experiments, however, the particles of the lower 
layer are located strictly under the particles of the upper layer. In a multilayer crystal, the microparticles 
form vertical columns. Theoretically, this type of packing of particles should not occur for a shielded potential 
[16]. In addition, it was experimentally observed that an increase in the gas pressure in the discharge chamber 
leads to an increase of the amplitude of particle oscillation around the equilibrium positions, which, ultimately, 
leads to crystal melting. We note that the mean kinetic energy of the particles is significantly higher than the 
gas temperature. 

We studied an equilibrium structure of a two-layer crystal of microparticles in the near-electrode layer 
using numerical simulation. A mechanism that maintains the unusual vertical disposition of particles in a 
plasma crystal is proposed. The dependence of stability of the crystal to oscillations on the gas pressure is 
explained. Some results on the spatial distribution of ions in the crystal can be found in [13, 17]. 

Mode l  of  Ion M o t i o n  in a Crys ta l  of Micropar t ic les .  The shielding of the microparticle potential 
in a plasma and the forces acting on a particle in the presence of an external electric field have been studied 
[18-20] using various approximations. The transfer of the momentum of ions when they are scattered on the 
particles induces a force that acts on the particles and is directed along the motion of ions. According to 
simulation results of Choi and Kushner [21], the interaction of two microparticles in a plasma is described 
in a first approximation by the Debye-Hfickel potential. The specifics of the problem considered does not 
permit the use of previously obtained results to analyze the forces acting on microparticles. First, we are 
interested in the behavior of the particles in the near-electrode layer, where the electric-field intensity and the 
energy of the ions are significantly higher than in the quasineutral plasma. In addition, the mean density of 
ions in the layer is greater than the electron density. According to results of modeling of ion motion in the 
diffusion-drift approximation [15], the shielding of the particle potential in the layer is not so significant as in 
the quasineutral plasma. Second, to analyze the structure and stability of the crystal, it is necessary to find 
transverse forces that arise when the particles are shifted from their equilibrium positions rather than the 
force that acts in the direction of the field. 

It should be emphasized that a fully self-similar analysis of the motion of the ions and microparticles 
that takes into account their interaction is hardly possible even on advanced supercomputers because of the 
substantially three-dimensional character of the problem (hexagonal symmetry of the lattice) and because 
of the large scatter in characteristic lengths (from micron-scale radii of the particles to centimeter-scale 
thicknesses of the near-electrode layers). Thus, below we study a non-self-similar formulation of the problem. 
The goal is to derive simple relationships for the forces acting on the particles that can be used to analyze 
collective effects. 

We consider the motion of ions in the presence of a two-layer crystal of microparticles for experimental 
conditions [13] in which the behavior of microparticles in the near-electrode layer of a high-frequency discharge 
in helium was studied for pressures P = 50-200 Pa. In the plane of the layer [p = (z, y)] particles of radius 
R = 4.7 pm formed a hexagonal lattice (p~ = nlal  + n2a2, where al = (a,0) and a2 = (a/2, x/3a/2) are the 
vectors of the Bravais lattice) with a distance between the particles a = 450 pro. The particles of the lower 
layer were located at a distance d = 0.8a = 360 ttm under the particles of the upper layer. Unless otherwise 
stated, the results described below refer to exactly these parameters of the lattice and a potential on the 
particle surface U = 5 eV. From the symmetry condition, it is clear that the transverse forces are equal to 
zero for this position of the particles. For analysis of the amplitude of the restoring force, the lower layer as 
a whole was shifted at a certain distance/ix along the z axis relative to the upper layer. 

We consider the distribution of the potential generated by the hexagonal lattice of charged particles 
without shielding: 

~0(r) = - ~ e Z / l r  - Pl l, P l  = nlal  + n2a2. 
Pl 
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In the vicinity of the particle, the potential has a Coulomb character qo(r) = e Z / r .  At long distances, it is 
convenient to use the Fourier expansion 

qo(r) = ~ q ( Z )  exp (iqp), q = nab1 + n2b2, 
q 

where bl and b2 are the vectors of the reciprocal Bravais lattice. The coefficients ~Oq(Z) have the form 

02r -4~r eZ6(  z ) / S, 
0z 2 q2~q = 

where S = V ~ a 2 / 2  is the area of an elementary cell of the hexagonal lattice. For subsequent analysis, it is 

represent the potential of the layer as ~0(r) = ~00(z) + ~l( r )  and ~0(z) = ]~o(r)  convenient to alp, where 

integration is performed with respect to the transverse coordinates. The part of the potential that depends 
on the transverse coordinates is described by harmonics with q ~ 0 

47feZ 
~q(Z) = - ~  exp ( -q lz l )  

qS 

and decreases exponentially with distance z from the layer. The minimum value of the vector of'the reciprocal 
lattice is 2 x / a ,  and ~ol rapidly decreases for z > z ,  = a/2~r. For experimental conditions, z, ~ 70 #m turns 

out to be much smaller than the characteristic values of the electron Debye length r~t = ~/Te/4~e2ne which, 
for typical values of density n,  = 1014-10 is m -3 and electron temperature Te = 3-7 eV, lies within 400 to 
2000 pro. Therefore, the role of electrons in the shielding of the part of the potential that depends on the 
transverse coordinates is insignificant. A more complicated problem of ion shielding is considered below. 

In accordance with the commonly accepted model for the near-electrode layer, the longitudinal field in 
the layer was considered to be linearly increasing with distance from the interface between the layer and the 
quasineutral plasma (z = 0): 

E = 4 r p z ,  O < z < z l ,  E = E ( z l )  + 4 r p ( z  - z l ) ,  zl < z < z 2 ,  
(1) 

E = E(z2) + 4 r p ( z  - z2), z > z2. 

Here Zl and z2 axe the coordinates of the upper and lower layers of charged particles. The electric field in (1) 
includes the field of the space ion charge of constant density p and the field of two uniformly charged planes 
of microparticles. The latter is described by a potential ~00 that  corresponds to the potential of a uniformly 
charged layer with the density of negative charge pt = e Z / S .  Thus, we have E ( z l )  = 4 r p z l  - 4rp t  and 
E(z~)  = 4rpz2  - 4rpt .  In equilibrium, the gravitational force g M  that  acts on the microparticles is balanced 
by the action of the electric field e Z E .  This allows us to find the values of the field intensity Ex and E2 at 
the points zl and z2: E ( z l )  = E(z2) = Eo = g M / Z ,  where g is the acceleration of gravity and M is the mass 
of microparticles. From the relation E(z2)  = E(zx )  - 4rp t  + 47rpd and the condition E ( z l )  = E(z2 )  we obtain 
the mean density of the space charge of the ions p = e Z / S d  at the site of the crystal of micropaxticles. For 
U = 5 eV, the characteristic intensity of the field is E0 = 25 V /cm and the ion density is p = 2.6- 1014 m -3. 
Since ~1 rapidly decreases with distance from the layer, we are interested in a rather narrow region of the 
near-electrode layer for which the use of linear approximation of the field is justified. 

Thus, the spatial distribution of the field is a superposition of the field (1) and the fields of the two 
layers E1 = - V ~ o l ( z -  z l ,p)  and E2 = - V ~ l ( z -  z2,p), which depend o n  the transverse coordinates (p 
is the transverse coordinate). The force that acts on the particle is determined, first, by the transfer of the 
momentum of the ions when they fall on the particle 

F1 = f m i v n i ( v n )  d S  (2) 

[rni, v, and ni are the mass, velocity, and density of the ions, and n is the normal vector to the particle surface, 
and integration in (2) is performed over the particle surface], and, second, by the Coulomb interaction between 
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Fig. 1. Trajectories of ion motion in the drift (a) and collision-free (b) regimes (R = ~ + y2). 

the ions and the particle. We are interested only in transverse forces, which are defined by 

F~ f  ni(r)V (z- zk,p) dr, k = 1, 2, 

where k is the layer number and integration is performed over the volume of an elementary cell. The ion velocity 
distribution function at the upper boundary of the computational domain zt was specified as a Boltzmann 
distribution function in a field E(zt). In the transverse direction, the ion density at the upper boundary nt 
was constant. The lower boundary zb of the computational domain corresponded to an absolutely absorbing 
electrode. In the transverse direction, the computational domain corresponded to one elementary cell of the 
hexagonal lattice. When the ion trajectory leaves the elementary cell, the ion is again placed in a computational 
domain with transverse coordinates obtained by shifting the lattice by the corresponding vector. 

In Monte Carlo simulations of the ion motion, we took into account the basic process of ion scattering 
in helium m resonance recharging with a constant cross section. In the range of pressures studied, the mean 
free path of the ions $ was within 50-200 ~tm. Several dozens of thousands of ion trajectories were used in 
calculations. 

Ca l cu l a t i on  R e s u l t s  for  t h e  Ion  Mot ion .  For an understanding of the special features of the ion 
motion, two limiting transfer regimes are of interest: the drift regime (A ~ 0) and the collision-free regime 
($ ~ co) (Fig. 1). For the drift transfer, the velocity of ion motion was assumed to be proportional to the local 
intensity of the field. For the collision-free regime, we solved Newton equations, ignoring resonance recharging. 
It turned out that  the radial distributions of ion density behind the particles differ even qualitatively. Shaded 
regions with a lower ion concentration are formed behind the particles in the drift regime, whereas in the 
collision-free regime the ion density behind the particles increases because of the focusing action of the field 
of the particles. Thus, as we pass from high pressures (the drift regime) to lower pressures (the collision-free 
regime), we should expect the occurrence of an elevated ion-density region behind the particles. 

For pressures of 50-200 Pa, an intermediate case is realized, where resonance recharging cannot be 
ignored and the ion velocity is not a local function of the electric-field intensity. The cross section of resonance 
recharging of the ions in the test gas is defined as a function of the ion energy. After a collision, the ion energy 
is determined by the gas temperature of the gas, and it is significantly lower than the mean energy of the ions 
in the near-electrode layer eAE0. Therefore, the attraction of the ion by the particle strongly affects the ion 
trajectory exactly after resonance recharging, which is manifested as an inflection. The length of the potential 
well for an ion can be evaluated assuming that the field in the vicinity of a particle is a superposition of the 
uniform external field E0 and the Coulomb field of the particle: ~(r) = -rEo cos 0 - eZ/r, where r is the 
distance from the particle and 0 is the angle between the direction of the external field and the radius-vector. 
The diameter of the potential well for 0 = ~r/2 is equal to the distance from the particle to the edge of the 

well L = v ~ / E o  ..~ 100 y m  in the direction in which the field acts (0 = 0). Most of the ions that experienced 
recharging in the potential well ultimately arrive at the particle. The remaining ions after recharging" are 
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Fig. 2. Distribution of ion density averaged over 
the transverse coordinates for various values of the 
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Fig. 3. Ion density distribution. 

focused by the particle field. As noted above, the transverse field rapidly decreases as the distance from the 
layer increases. Therefore, if the next recharging occurs when Iz - zll > z., the focused ions move already 
parallel to the external-field direction. The lower particles begin to affect the ion motion only at distances of 
the order of z. from the ion to the lower layer. 

The results obtained in ion density calculations (Figs. 2 and 3) are in good agreement with the 
qualitative analysis of the ion trajectories. The ion density averaged over the transverse coordinates (x, 
9) decreases toward the electrode because of the increase in the magnitude of the electric field and, hence, the 
drift velocity of the ions. The ions captured by the potential well give a maximum of the mean concentration 
near the particles, which is clearly seen in isolines of the ion density averaged over the azimuthal angle (Fig. 3). 
The ion density in the vicinity of a particle (in region I) is higher than the mean value by a factor of dozens�9 
Behind the particles we can see a "tail" of ions, which is caused by ion focusing (region II). The ion density 
here is severalfold higher than the mean value. In region III of undisturbed motion, the ion concentration 
varied weakly in the radial direction. The distance from the upper edge of the potential well to the particle 
(x /~ -  1 ~ 0.414L) is smaller than L. That is why, probably, there are more ions behind the particle than 
ahead of it, and the longitudinal force component Fz is directed toward the electrode. Because of the long- 
range character of Coulomb interaction, the transfer of the momentum of the ions at the moment they hit 
the particle makes a small contribution to the total force that acts on the particle from the side of the ions. 
When the lower layer is shifted relative to the upper layer, the longitudinal components of the forces remain 
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Fig. 4. Dependence of the transverse restoring force acting on 
the particle upon its displacement, calculated from an effective 
ion charge with parameters Zi and di (solid curves) and using 
the Monte Carlo method (points): vertical bars indicate the 
error of statistical calculations; ~ = 5 eV, a = 450 pro, d = 
360/zm, Z* = Znt /p .  

almost constant. We note that the ions exert a weak action on the particle as compared to the gravitational 
force and the force of the electric field. As follows from the above analysis of the distribution of the potential 
of the layer, the lower particles should affect the ion motion only for Iz - z2[ ~ z,. This is confirmed by 
the calculation results for ion density distributions in various planes. Since d ~ z., the displacement of the 
lower layer has practically no effect on the speed of charging of the upper particles, and the transverse force 
for the upper particles equals zero to within the accuracy of statistical error. Although only about 15% of 
the ion flow are captured by the upper particles, the speed of charging of the lower particles in the case 
of zero displacement is higher than that of the upper particles because of the effect of ion focusing. As the 
displacement of the lower lattice relative to the upper lattice increases, the speed of charging of the lower 
particles decreases monotonically. 

From the viewpoint of the analysis of the equilibrium structure of the crystal of particles, the most 
interesting consequence of ion focusing is a transverse restoring force that arises when the lower particles are 
shifted relative to the upper particles (Fig. 4). Since the problem is symmetric, the restoring force is equal 
to zero for 6x = 0 and a[2. Depending on the mean-free path, the maximum of the restoring force lies at 
6x = (0.20--0.25)a. As the mean-free path and the potential of the particle increase, the effect of ion focusing 
becomes stronger and the effective positive charge behind the particles of the upper layer increases. Hence, 
the amplitude of the restoring force, which is determined by the interaction between the lower particles and 
the ion cloud behind the upper particles, also increase. 

The results of Monte Carlo calculations show that the characteristics of the ion cloud such as the ion- 
density distribution with respect to the coordinates and the effective charge depend weakly on the displacement 
of the lower layer. Therefore, the restoring force can be approximated by the force of interaction between the 
lower particles and a certain effective ion charge Zi located at a fixed distance d - di behind the upper 
particles. The parameters Zi and di were determined by the least-squares method using the dependences of 
the restoring force on the displacement of the lower particles that were obtained in the Monte Carlo calculation 
of the ion flux. We note that the empirical dependences of the restoring force describe the calculation results 
fairly well (to within the accuracy of statistical error) (Fig. 4). For the pressures studied, the effective charge 
is Zi = (0.44-0.58)Znt/p and the distance to the upper particle is d - di = 0.51-0.62a. For typical values 
nt/p - 2-3 (see Fig. 2), the effective positive charge is of the same order of magnitude as the charge of the 
particles. For the lower particles, however, the attraction to the ion cloud is significantly stronger than the 
repulsion from the upper particles since d, > z,. For a more accurate calculation of the forces acting on.the 
particle, it is necessary to take into account the effect of the ion shielding of the potential of the particles. 
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